Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 519, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542083

RESUMO

The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) was a yearlong expedition supported by the icebreaker R/V Polarstern, following the Transpolar Drift from October 2019 to October 2020. The campaign documented an annual cycle of physical, biological, and chemical processes impacting the atmosphere-ice-ocean system. Of central importance were measurements of the thermodynamic and dynamic evolution of the sea ice. A multi-agency international team led by the University of Colorado/CIRES and NOAA-PSL observed meteorology and surface-atmosphere energy exchanges, including radiation; turbulent momentum flux; turbulent latent and sensible heat flux; and snow conductive flux. There were four stations on the ice, a 10 m micrometeorological tower paired with a 23/30 m mast and radiation station and three autonomous Atmospheric Surface Flux Stations. Collectively, the four stations acquired ~928 days of data. This manuscript documents the acquisition and post-processing of those measurements and provides a guide for researchers to access and use the data products.

2.
Nat Commun ; 14(1): 4887, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580358

RESUMO

Atmospheric gaseous elemental mercury (GEM) concentrations in the Arctic exhibit a clear summertime maximum, while the origin of this peak is still a matter of debate in the community. Based on summertime observations during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition and a modeling approach, we further investigate the sources of atmospheric Hg in the central Arctic. Simulations with a generalized additive model (GAM) show that long-range transport of anthropogenic and terrestrial Hg from lower latitudes is a minor contribution (~2%), and more than 50% of the explained GEM variability is caused by oceanic evasion. A potential source contribution function (PSCF) analysis further shows that oceanic evasion is not significant throughout the ice-covered central Arctic Ocean but mainly occurs in the Marginal Ice Zone (MIZ) due to the specific environmental conditions in that region. Our results suggest that this regional process could be the leading contributor to the observed summertime GEM maximum. In the context of rapid Arctic warming and the observed increase in width of the MIZ, oceanic Hg evasion may become more significant and strengthen the role of the central Arctic Ocean as a summertime source of atmospheric Hg.

3.
Nat Commun ; 14(1): 1769, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997509

RESUMO

Chlorine radicals are strong atmospheric oxidants known to play an important role in the depletion of surface ozone and the degradation of methane in the Arctic troposphere. Initial oxidation processes of chlorine produce chlorine oxides, and it has been speculated that the final oxidation steps lead to the formation of chloric (HClO3) and perchloric (HClO4) acids, although these two species have not been detected in the atmosphere. Here, we present atmospheric observations of gas-phase HClO3 and HClO4. Significant levels of HClO3 were observed during springtime at Greenland (Villum Research Station), Ny-Ålesund research station and over the central Arctic Ocean, on-board research vessel Polarstern during the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC) campaign, with estimated concentrations up to 7 × 106 molecule cm-3. The increase in HClO3, concomitantly with that in HClO4, was linked to the increase in bromine levels. These observations indicated that bromine chemistry enhances the formation of OClO, which is subsequently oxidized into HClO3 and HClO4 by hydroxyl radicals. HClO3 and HClO4 are not photoactive and therefore their loss through heterogeneous uptake on aerosol and snow surfaces can function as a previously missing atmospheric sink for reactive chlorine, thereby reducing the chlorine-driven oxidation capacity in the Arctic boundary layer. Our study reveals additional chlorine species in the atmosphere, providing further insights into atmospheric chlorine cycling in the polar environment.

4.
Sci Data ; 9(1): 723, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434022

RESUMO

Despite the key role of the Arctic in the global Earth system, year-round in-situ atmospheric composition observations within the Arctic are sparse and mostly rely on measurements at ground-based coastal stations. Measurements of a suite of in-situ trace gases were performed in the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. These observations give a comprehensive picture of year-round near-surface atmospheric abundances of key greenhouse and trace gases, i.e., carbon dioxide, methane, nitrous oxide, ozone, carbon monoxide, dimethylsulfide, sulfur dioxide, elemental mercury, and selected volatile organic compounds (VOCs). Redundancy in certain measurements supported continuity and permitted cross-evaluation and validation of the data. This paper gives an overview of the trace gas measurements conducted during MOSAiC and highlights the high quality of the monitoring activities. In addition, in the case of redundant measurements, merged datasets are provided and recommended for further use by the scientific community.

5.
Proc Natl Acad Sci U S A ; 110(50): 20034-9, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24277830

RESUMO

In the troposphere, methanol (CH3OH) is present ubiquitously and second in abundance among organic gases after methane. In the surface ocean, methanol represents a supply of energy and carbon for marine microbes. Here we report direct measurements of air-sea methanol transfer along a ∼10,000-km north-south transect of the Atlantic. The flux of methanol was consistently from the atmosphere to the ocean. Constrained by the aerodynamic limit and measured rate of air-sea sensible heat exchange, methanol transfer resembles a one-way depositional process, which suggests dissolved methanol concentrations near the water surface that are lower than what were measured at ∼5 m depth, for reasons currently unknown. We estimate the global oceanic uptake of methanol and examine the lifetimes of this compound in the lower atmosphere and upper ocean with respect to gas exchange. We also constrain the molecular diffusional resistance above the ocean surface-an important term for improving air-sea gas exchange models.


Assuntos
Poluentes Atmosféricos/análise , Atmosfera/análise , Monitoramento Ambiental/estatística & dados numéricos , Metanol/análise , Modelos Químicos , Água do Mar/análise , Oceano Atlântico , Monitoramento Ambiental/métodos
6.
J Res Natl Inst Stand Technol ; 101(1): 21-46, 1996.
Artigo em Inglês | MEDLINE | ID: mdl-27805091

RESUMO

As part of an international measurement intercomparison of instruments used to measure atmospheric 222Rn, four participating laboratories made nearly simultaneous measurements of 222Rn activity concentration in commonly sampled, ambient air over approximately a 2 week period, and three of these four laboratories participated in the measurement comparison of 14 introduced samples with known, but undisclosed ("blind") 222Rn activity concentration. The exercise was conducted in Bermuda in October 1991. The 222Rn activity concentrations in ambient Bermudian air over the course of the intercomparison ranged from a few hundredths of a Bq · m-3 to about 2 Bq · m-3, while the standardized sample additions covered a range from approximately 2.5 Bq · m-3 to 35 Bq · m-3. The overall uncertainty in the latter concentrations was in the general range of 10 %, approximating a 3 standard deviation uncertainty interval. The results of the intercomparison indicated that two of the laboratories were within very good agreement with the standard additions, and almost within expected statistical variations. These same two laboratories, however, at lower ambient concentrations, exhibited a systematic difference with an averaged offset of roughly 0.3 Bq · m-3. The third laboratory participating in the measurement of standardized sample additions was systematically low by about 65 % to 70 %, with respect to the standard addition which was also confirmed in their ambient air concentration measurements. The fourth laboratory, participating in only the ambient measurement part of the intercomparison, was also systematically low by at least 40 % with respect to the first two laboratories.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...